Rocznik Ochrona Środowiska 2024, vol. 26, pp. 264-272


Bowen Yang, Limin Dang Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.Cong ChenMingwang Li

College of Materials and Chemical Engineering, Hunan Institute of Engineering, China
Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
https://doi.org/10.54740/ros.2024.026

Pesticide usage reaches several million metric tons annually worldwide, and the effects of pesticides on non-target species, such as various fishes in aquatic environments, have resulted in serious concerns. Predicting pesticide aquatic toxicity to fish is of great significance. In this paper, 20 molecular descriptors were successfully used to develop a regression quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for the toxicity logLC50 of a large data set consisting of 1106 pesticides on fishes by using a general regression neural network (GRNN) algorithm. The optimal GRNN model produced correlation coefficients R of 0.8901 (rms = 0.6910) for the training set, 0.8531 (rms = 0.7486) for the validation set, and 0.8802 (rms = 0.6903) for the test set, which are satisfactory compared with other models in the literature, although a large data set of toxicity logLC50 was used in this work.

 


Toxicity; pesticide; QSTR; general regression neural network

 

supplementary

1. Supplementary_Material _ROC_Dang_R.xlsx

AMA Style
Yang B, Dang L, Chen C, Li M. Bowen Yang, Limin Dang, Cong Chen, Mingwang Li. Rocznik Ochrona Środowiska. 2024; 26. https://doi.org/10.54740/ros.2024.026

ACM Style
Yang, B., Dang, L., Chen, C., Li, M. 2024. Bowen Yang, Limin Dang, Cong Chen, Mingwang Li. Rocznik Ochrona Środowiska. 26. DOI:https://doi.org/10.54740/ros.2024.026

ACS Style
Yang, B.; Dang, L.; Chen, C.; Li, M. Bowen Yang, Limin Dang, Cong Chen, Mingwang Li Rocznik Ochrona Środowiska 2024, 26, 264-272. https://doi.org/10.54740/ros.2024.026

APA Style
Yang, B., Dang, L., Chen, C., Li, M. (2024). Bowen Yang, Limin Dang, Cong Chen, Mingwang Li. Rocznik Ochrona Środowiska, 26, 264-272. https://doi.org/10.54740/ros.2024.026

ABNT Style
YANG, B.; DANG, L.; CHEN, C.; LI, M. Bowen Yang, Limin Dang, Cong Chen, Mingwang Li. Rocznik Ochrona Środowiska, v. 26, p. 264-272, 2024. https://doi.org/10.54740/ros.2024.026

Chicago Style
Yang, Bowen, Dang, Limin, Chen, Cong, Li, Mingwang. 2024. "Bowen Yang, Limin Dang, Cong Chen, Mingwang Li". Rocznik Ochrona Środowiska 26, 264-272. https://doi.org/10.54740/ros.2024.026

Harvard Style
Yang, B., Dang, L., Chen, C., Li, M. (2024) "Bowen Yang, Limin Dang, Cong Chen, Mingwang Li", Rocznik Ochrona Środowiska, 26, pp. 264-272. doi:https://doi.org/10.54740/ros.2024.026

IEEE Style
B. Yang, L. Dang, C. Chen, M. Li, "Bowen Yang, Limin Dang, Cong Chen, Mingwang Li", RoczOchrSrod, vol 26, pp. 264-272. https://doi.org/10.54740/ros.2024.026