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Abstract: Pesticide usage reaches several million metric tons annually worldwide, and the effects of pesticides on non-
target species, such as various fishes in aquatic environments, have resulted in serious concerns. Predicting pesticide 
aquatic toxicity to fish is of great significance. In this paper, 20 molecular descriptors were successfully used to develop 
a regression quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for the toxicity logLC50 of a large 
data set consisting of 1106 pesticides on fishes by using a general regression neural network (GRNN) algorithm. 
The optimal GRNN model produced correlation coefficients R of 0.8901 (rms = 0.6910) for the training set, 0.8531 
(rms = 0.7486) for the validation set, and 0.8802 (rms = 0.6903) for the test set, which are satisfactory compared with 
other models in the literature, although a large data set of toxicity logLC50 was used in this work. 
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1. Introduction 

Modern agricultural, residential, commercial and industrial settings are increasingly relying on the use of 
pesticides such as herbicides, insecticides, nematicides, and fungicides in protecting crops, plants and public 
health and in controlling overgrowth of insects, fungi, rodents, noxious weeds, etc. Nearly 2.7 million tons of 
pesticides are used in global agricultural production annually (Isah et al. 2020, Yu & Zeng 2022). The effects 
of pesticides on non-target species, such as man and aquatic organisms, have resulted in severe concerns 
(Mo et al. 2022). 

Performing a pesticide risk assessment is essential to provide a precaution against environmental pollution. 
In determining the acute toxicity of pesticides, fish are usually used as laboratory animals. Unfortunately, the 
experimental tests for acute toxicity to fish are expensive and time-consuming (Yu 2020a, Yu 2021). A quan-
titative structure-activity/toxicity relationship (QSAR/QSTR) model, being a rapid, cost-effective and ethical 
alternative, can be used for predicting chemical toxicity (Sullivan et al. 2014, Mit et al. 2022, Masand et al. 
2021, Fang et al. 2022), even for chemicals without being synthetized. This methodology is proposed by EU 
REACH Legislation, ICH M7 guideline, the US FDA and the US EPA to assess the environmental risks of 
a chemical (Cachot 2014, Schmidt et al. 2021). Some QSTR models have been reported on pesticide aquatic 
toxicity to fishes. 

Toropov et al. (2020) introduced QSTR models for 311 acute toxicity data (pLC50) to Rainbow Trout with 
the index of ideal correlations. The models have coefficients of determination R2 being 0.81-0.86 and root 
mean square (rms) errors of 0.55-0.65 for the validation set. 

Pandey et al. (2020) considered QSAR modelling of 85 acute fish toxicity (pLC50) of environmental trans-
formation products of pesticides using ten simple 2D descriptors and partial least squares regression. The train-
ing and test sets have R2 higher than 0.73 and mean absolute errors (MAE) lower than 0.57.  

Jia et al. (2020) proposed a linear QSAR model for aquatic toxicity (pLC50) of 311 pesticides on Rainbow 
Trout with molecular weight and 27 norm indices. The model has a coefficient of determination R2 higher than 
0.80 for the training set (249 samples) and test set (62 samples). 

Galimberti et al. (2020) established linear QSAR models for small pesticide toxicity Log(EC50) data sets 
for Pimephales promelas and Oncorhynchus mykiss. The two models have 12 samples and three descriptors, 
yielding R2 of 0.96 and MAE higher than 0.20. However, for linear QSARs, the ratios of the numbers of 
samples to descriptors are generally greater than 5. 
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The QSAR models mentioned above focus on a particular fish species and have relatively small data sets of 
pesticide toxicity to fishes. Thus, these models possess some limitations in application. Li et al. (2017) and Yu 
& Zeng (2022) reported classification models for large data sets of pesticide toxicity to various fish species. 
These classification models have a larger applicability domain in predicting the toxic categories of pesticides. 

In predicting the physicochemical properties of compounds, QSAR models based on regression analysis 
are more accurate than classification models, although developing regression models is more difficult than 
building classification models. This work aims to establish a regression QSAR model for a large data set, 
including 1106 pesticide toxicity to fishes, by using a general regression neural network (GRNN) algorithm. 

2. Materials and Methods 

2.1. Data set 

Table S1 in Supplementary Material shows 1106 toxicity data (96 h, LC50) of organic pesticides on fish 
species, including Oncorhynchus mykiss, Lepomis macrochirus, Pimephales promelas, Brachydanio rerio,  
Cyprinodon, Cyprinus carpio, etc., which were reported in the literature (Li et al. 2017, Yu & Zeng 2022). The 
toxicity data (96 h, logLC50) lie from −4.4559 to 4.7324 mg/L. For pesticides of approximately equal molecular 
weight, a smaller logLC50 value suggests the corresponding pesticide molecule possesses higher toxicity to 
fish. The total data set (1106 organic pesticides) was randomly divided into three sets at the ratio of 
70%:15%:15%, which were, respectively, used as the training set (Nos. 1-774 in Table S1 in Supplementary 
Material), the validation set (Nos. 775-940 in Table S1) and the test set (Nos. 941-1106 in Table S1). QSAR 
models of logLC50 were established with the training set by tuning the model parameters with the validation 
set. Subsequently, the models were assessed with the test set (Golmohammadi & Safdari 2010). 

2.2. Descriptors derivation 

The molecular structures were constructed with KingDraw (http://kingdraw.cn/en/index.html) and then op-
timized with the AM1 method in Gaussian 09 (Revision A.02). Subsequently, these molecules were used as 
input files for Dragon 6.0 (Talete srl, 2012) to obtain molecular descriptors. After removing those descriptors 
being a constant or approximately equaling to a constant or whose partial correlation coefficients > 0.90, 
773 descriptors were retained for descriptor selection in the next steps (Yu 2023). 

2.3. GRNN principle 

GRNN can successfully deal with classification and regression prediction by introducing the nonparametric 
strategy based on Parzen window (Yu 2020a). As is shown in Fig. 1, it consists of four layers: input layer, 
pattern layer, summation layer and output layer. For the input layer, the number of neurons equals to the di-
mension of the input vector in the training set. For the pattern layer, the number of neurons equals the number 
of samples. A transfer function of the ith neuron is used to correlate its output with the input variable X and the 
learning sample Xi, by calculating their Euclid distance: 

𝑝 exp 𝑋 𝑋 𝑋 𝑋 /2𝜎         𝑖 1, 2,⋯ ,𝑛 (1) 

where σ is the SPREAD parameter of the Gaussian function and needs to be adjusted by users. 
In the summation layer, two types of neurons are used in summation. One is the denominator node SA, and 

the other is the numerator node SNj. The former is based on an arithmetic sum for the output from the neurons 
in the pattern layer by setting the connection weights of 1:  

𝑆 ∑ 𝑃  (2) 

The latter is used for weighted summation with the connection weight yij associating the ith neuron in the 
pattern layer with the jth neuron in the summation layer: 

𝑆 ∑ 𝑦 𝑃     𝑗 1, 2,⋯ , 𝑘 (3) 

In the output layer, the prediction results can be obtained with: 

𝑦 𝑆 /𝑆     𝑗 1, 2,⋯ , 𝑘 (4) 
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Y ˆ  

Fig. 1. Network structure of GRNN algorithm 

3. Results and Discussion 

3.1. Descriptors and toxicity mechanism 

Stepwise multiple regression (MLR) analysis in SPSS 19.0 was carried out for 1106 logLC50 of pesticides 
on fish and 773 molecular descriptors mentioned above. In total, 28 descriptors entered an MLR model when 
the increment of determination coefficient (ΔR2) ≥ 0.04 was set as the criterion for adding new descriptors. 
Then, MLR analysis was performed for the 28 descriptors and 774 logLC50 in the training set with the same 
criterion in introducing new descriptors. In the end, 20 molecular descriptors were obtained and taken as the 
optimal descriptor subset for developing QSAR models for logLC50 of pesticides on fishes. The physical mean-
ing and toxicity mechanism of descriptors are listed in Table 1, their values are shown in Table S1 in Supple-
mentary Material, and the characteristics of molecular descriptors obtained from the total set are shown in 
Table 2. 

 
Table 1. The block and physical meaning of descriptors in the GRNN model 

Descriptor Block Physical meaning and toxicity mechanism 

MLOGP2 Molecular properties 

MLOGP2 denotes the squared Moriguchi octanol-water 
partition coefficient. It is related to frequencies of pres-
ence (or absence) of some molecular features such as 
carbon and halogen atoms. A pesticide molecule with 
a larger MLOGP2 tends to bind lipophilic chemicals 
and to accumulate in fishes and cause toxicity. 

Eig02_AEA(dm) 
Edge adjacency  

indices 

It is eigenvalue no. 2 from the augmented edge adja-
cency matrix weighted by dipole moment and reflects 
information about edge connectivity in the H-depleted 
molecular graph. It is related to molecular bond types, 
group polarity, and molecular size. A larger 
Eig02_AEA(dm) indicates the molecule has more reac-
tion or binding sites, resulting in toxicity. 

CATS2D_09_DD CATS 2D descriptors 

It means CATS2D Donor-Donor at lag 09. Similar to 2D 
Atom Pairs, CATS 2D descriptors reflect molecular fea-
tures about potential pharmacophore points, including 
hydrogen-bond donor (D), hydrogen-bond acceptor (A), 
positively charged (P), negatively charged (N), and lip-
ophilic (L), in topological distances of 0-9 bonds. 
A molecule with CATS2D_09_DD>0 means that it has 
a greater possibility of forming hydrogen bonds, which 
are related to molecular solubility in the water environ-
ment. 
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Table 1. cont. 

Descriptor Block Physical meaning and toxicity mechanism 

O-058 
Atom-centered  

fragments 

It denotes a molecule's number of specific atom types 
(=O). Ketones (excluding ,–unsaturated ketones), be-
ing non-polar narcosis chemicals, usually have lower 
toxicity to fish and larger O-058 values. 

nR03 Ring descriptors 

nR03 is the number of three-member rings. As is known, 
the three-member ring is less stable than the four-, five-, 
and six-member rings. Thus, these molecules with three-
member rings have higher unspecific reactivity and tox-
icity. 

nRCOOR 
Functional group 

counts 

It is the number of esters (aliphatic). It is known that an 
ester molecule with -position of a double or triple bond 
can undergo a Michael type addition of nucleophiles and 
lead to higher toxicity. 

nROR 
Functional group 

counts 

nROR is the number of ethers (aliphatic). Generally, lin-
ear ethers or monocyclic mono-ethers (excluding epox-
ides or peroxides) are type narcosis or baseline toxicity. 

nCXr= 
Functional group 

counts 

It is the number of X on ring C (sp2). Similar to the de-
scriptor nRCOOR, the molecules have unspecific reac-
tivity and possess relatively high toxicity when the sub-
stituent X is a good leaving group (e.g. halogen or hy-
droxyl group). 

nArOCON 
Functional group 

counts 

nArOCON denotes the number of (thio-) carbmates (ar-
omatic). The molecules with nArOCON groups may un-
dergo the same reaction mechanism as those having 
nRCOOR and nCXr= groups. 

MW 
Constitutional  

descriptors 

MW denotes the molecular weight. On the one hand, 
molecular size influences molecules penetrating the two 
phospholipid bilayers of the cell membrane. On the 
other hand, a molecule with a large MW may have more 
reaction or binding sites, and resulting in toxicity. 

H-049 
Atom-centered  

fragments 

H-049 equals the number of H attached to C3(sp3) / 
C2(sp2) / C3(sp2) / C3(sp) (the superscript represents the 
formal oxidation number). A molecule with a large  
The h-049 value may be conducive to forming hydrogen 
bonds and improving its solubility in the water environ-
ment, resulting in low toxicity. 

B07[N-N] 2D Atom Pairs 

It denotes the presence/absence of N-N at topological 
distance 7. Similar to the descriptor H-049, the mole-
cules with B07[N-N] >0 (i.e., the presence of N-N at 
topological distance 7) generally have –NH– group 
forming hydrogen bonds. 

nROH 
Functional group 

counts 

nROH is the number of hydroxyl groups. Similar to the 
descriptors H-049 and B07[N-N], nROH reflects the 
ability to form hydrogen bonds. 
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Table 1. cont. 

Descriptor Block Physical meaning and toxicity mechanism 

CATS2D_01_DA CATS 2D descriptors 

It is CATS 2D Donor-Acceptor at lag 1 and can describe 
compounds with special groups such as >NNH– and  
–ONH–. The appearance of these groups is conducive to 
forming hydrogen bonds and to reducing toxicity to fish. 

Eta_betaS_A ETA indices 

It is an extended topochemical atom (ETA) index calcu-
lated with a sigma average VEM count. This descriptor 
is related to molecular bulk. As is shown in Table S1, 
the molecules with large Eta_betaS_A values possess 
ring groups. Compounds with a leaving group at an α-
position of an aromatic bond have benzylic activation, 
although ring groups may influence molecular penetra-
bility through the cell membrane. 

O% 
Constitutional  

descriptors 

O% is the per cent of O atoms in a molecule. The com-
pounds containing only C and H (or halogens) have 
lower O% values and possess type narcosis baseline 
toxicity. On the other hand, a molecule with large O% 
indicates that it may possess more flexible single bonds, 
which is beneficial for molecules to penetrate cell mem-
branes. 

DLS_03 Drug-like indices 

It is a modified drug-like score from Walters et al. 
(6 rules). It is related to Moriguchi's logP, the number of 
H-bond donors/ acceptors, rotatable bond number and 
molecular weight. A pesticide molecule with a larger 
DLS_03 has a smaller LC50 value and higher toxicity 
to fish. 

B03[N-P] 2D Atom Pairs 

It denotes the presence/absence of N-P at topological dis-
tance 3. Organic phosphorus pesticides with relatively 
high 03[N-P] values can inhibit acetylcholinesterase in 
vivo and belong to specifically acting chemicals, resulting 
in high toxicity to fishes. 

CATS2D_06_PL CATS 2D descriptors 

CATS2D Positive-Lipophilic at lag 06. On the one hand, 
the molecules with CATS2D_06_PL >0 have positively 
charged groups and yield strong polarity, enhancing the 
solubility of pesticides in the water environment. On the 
other hand, lipophilic groups in a pesticide molecule can 
reduce its solubility and lead to high toxicity to fish. 

SaasN 
Atom-type E-state  

indices 

It is the sum of aasN E-states. Table S1 shows that the 
pesticide molecules (e.g. Nos. 17, 160, 504, and 748) 
have large SaasN values and low logLC50. These mole-
cules with special groups, such as triazole and imidaz-
ole, can cause toxicity to fish, although the mechanisms 
of toxicity are complicated (DeLorenzo et al. 2001). 
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Table 2. Characteristics of molecular descriptors used 

Descriptor Coefficients Std. Error t-test Sig. VIF 

Constant 1.065 0.493 2.160 0.031 / 
MLOGP2 -0.016 0.006 -2.596 0.010 2.500 
Eig02_AEA(dm) -0.363 0.061 -5.927 0.000 2.438 
CATS2D_09_DD -0.874 0.238 -3.675 0.000 1.162 
O-058 0.578 0.041 14.230 0.000 2.002 
nR03 -1.095 0.147 -7.440 0.000 1.169 
nRCOOR -0.550 0.096 -5.749 0.000 1.376 
nROR 0.330 0.055 6.030 0.000 1.262 
nCXr= -0.435 0.085 -5.086 0.000 1.048 
nArOCON -0.459 0.142 -3.227 0.001 1.049 
MW -0.004 0.001 -7.389 0.000 4.329 
H-049 0.267 0.067 3.997 0.000 1.443 
B07[N-N] 0.618 0.175 3.539 0.000 1.181 
nROH 0.716 0.070 10.263 0.000 1.573 
CATS2D_01_DA 0.636 0.177 3.597 0.000 1.023 
Eta_betaS_A 4.616 0.784 5.889 0.000 1.747 
O% -0.034 0.006 -5.355 0.000 1.706 
DLS_03 -1.225 0.367 -3.340 0.001 1.295 
B03[N-P] -1.384 0.245 -5.638 0.000 1.271 
CATS2D_06_PL 0.259 0.083 3.112 0.002 1.303 
SaasN -0.332 0.100 -3.304 0.001 1.414 

 

3.2. GRNN model 

The 20 molecular descriptors in the optimal descriptor subset were used as independent variables, and the 
toxicity logLC50 was used as the dependent variable to develop GRNN models from 774 pesticides in the 
training set by applying MATLAB R2014a. The spread parameter σ varying in the range of 0.01-0.15 with the 
step of 0.01 resulted in rms errors for the validation set, which are depicted in Fig. 2. As is shown, the optimal 
GRNN model with the SPREAD parameter σ being 0.11 has the minimum rms error of 0.7486 (log units). 
Then, 166 logLC50 of pesticides on fishes in the test set were adopted to assess the optimal GRNN model  
(σ = 0.11). The calculated logLC50 values are listed in Table S1 in the Supplemental file and shown in Fig. 3. 
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Fig. 2. Relationship between spread parameters and rms errors in the validation set 
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Fig. 3. Relationship between experimental versus calculated logLC50 with GRNN model 
 
The optimal GRNN model (σ = 0.11) yielded coefficients of determination R2 = 0.7922 and rms = 0.6910 

log units for the training set (774 samples), R2 = 0.7278 and rms = 0.7486 log units for the validation set (166 
samples), R2 = 0.7748 and rms = 0.6903 log units for the test set (166 samples). Although the GRNN model 
dealt with a large dataset of pesticide toxicity logLC50 to fishes, it is comparable to the latest similar models 
from the literature that have the number of samples and R2 for the training sets being n = 13 and R2 = 0.839 
(Önlü & Saçan 2017), n = 94 and R2 = 0.79 (Toropov et al. 2017), n = 66 and R2 = 0.80 (Khan et al. 2019) 
n = 249 and R2 = 0.80 (Jia et al. 2020) and n = 233 and R2 = 0.67 (Toropov et al. 2020). 

In addition, the optimal GRNN model produced R2 = 0.7798 and rms = 0.6998 log units for the total set of 
1106 pesticides. It is superior to the MLR model based on the same data sets and descriptor set, which has  
R2 = 0.5103 and rms = 1.0286 log units for the total dataset. Therefore, the 20 molecular descriptors used in 
the GRNN model are nonlinear with logLC50, which indicates that applying the GRNN algorithm to develop 
QSTRs is reasonable. 

Assessing the GRNN model with the test set resulted in an external correlation coefficient qext
2 = 0.7659 > 0.5; 

a slope k′ (=1.1021) of regression with fix intercept at 0, lying in the range of 0.85-1.15; determination coeffi-
cients R′02 = 0.7740 and R0

2 = 0.7706, close to the determination coefficient (R2 = 0.7748) of the test set. 
Therefore, the development of the GRNN model was successful (Golmohammadi & Safdari 2010).  

The optimal GRNN model was further checked with the bias level in prediction errors. There is a systematic 
error in prediction for a QSAR model if it has any one or more of the following five conditions (Roy, et al. 2017, 
Yu 2021): 

(1) NPE/NNE > 5 or NNE/NPE > 5; 
(2) ABS(MPE/MNE)> 2 or ABS(MNE/MPE)> 2; 
(3) MAE – ABS(AE) < 0.5 × MAE; 
(4) R2(ith vs (i-1)th residuals) > 0.5 for residuals sorted on Yobs; 
(5) R2 (Y vs residuals) > 0.5. 

where NPE is the number of positive errors, NNE is the number of negative errors, ABS(x) expresses the absolute 
value, AE is the average error, MPE is the mean positive error, and MNE is the mean negative error.  

Then the following formulas were obtained: NPE/NNE = 94/72 < 5; ABS(MPE/MNE) = 0.5315/0.4918 < 2; 
MAE – ABS(AE) = 0.5143 – 0.0877 = 0.4266 > 0.5 × 0.5143 = 0.2572; R2(ith vs (i-1)th residuals) = 0.1691 < 0.5 
for residuals sorted on Yobs; R2(Y vs residuals) = 0.3602 < 0.5. Obviously, the calculation results do not meet 
any of the above conditions. Thus, the optimal RF model has no systematic error in predictions. 

3.3. Applicability domain 

Figure 4 shows the Williams plot of the standardized residuals vs. leverages calculated with SPSS 19.0. 
The prediction points in the domain with absolutes values of standard residual less than 3 and leverages h less 
than the warning leverage h* are considered reliable (Yu 2020b). In this paper, the warning leverage is  
h* = 0.0814 = 3×(20+1)/774 = 3×(p+1)/n, here p and n are, respectively, the numbers of descriptors and 
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samples. As shown in Fig. 4, there are 13 samples (Nos. 113, 122, 142, 337, 404, 419, 494, 505, 756, 940, 951, 
954 and 1103 in Table S1) with absolute values of standard residuals >3 and leverages h less than 0.0814, 
which suggest that the larger standard residuals may result from the experimental errors for toxicity (pLC50). 
In addition, there are 32 samples (e.g. Nos. 2 and 4 in Table S1) possessing smaller standard residuals (<3) and 
higher leverages h (> 0.0814), indicating their toxicity (pLC50) can be accurately predicted. However, they 
have dissimilar structures with other pesticide molecules in the training set. 
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Fig. 4. Williams plot with a warning leverage of 0.0814 

4. Conclusions 

Although many factors affect pesticide toxicity on fishes, the optimal GRNN model (σ = 0.11) based on 20 
molecular descriptors was successfully developed for toxicity logLC50 of a large data set including 1106 pes-
ticides. The training set (774 pesticides), validation set (166 pesticides) and test set (166 pesticides) yielded 
correlation coefficients R of 0.8901, 0.8531 and 0.8802, respectively. Compared with other QSTR models of 
toxicity logLC50 on fishes reported in the literature, the optimal GRNN model in this work is accurate. How-
ever, a large data set of toxicity logLC50 was used for the model. 
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