Rocznik Ochrona Środowiska 2024, vol. 26, pp. 603-615
Piotr Gorzelańczyk1 , Lenka Ližbetinová2
1. Stanislaw Staszic State University of Applied Sciences in Pila, Poland 2. Institute of Technology and Business in České Budějovice, Czech Republic |
|
https://doi.org/10.54740/ros.2024.053 | |
Every year, there is a decline in the number of car accidents reported in Poland, the Czech Republic, and globally. While recent trends due to the pandemic have influenced these figures, the overall rate remains significant. Therefore, it is crucial to take measures aimed at reducing this number. The primary focus of this article is to analyze the traffic accident statistics for Poland and the Czech Republic. Annual data regarding traffic incidents in both countries has been scrutinized to achieve this. Projections for 2024 to 2030 have been developed based on police reports. Various neural network models were utilized to forecast the number of accidents. The findings indicate that the number of traffic incidents is likely to stabilize. This stabilization can be viewed in the context of the increasing number of vehicles on the roads and the expansion of new highways. Additionally, selecting sample sizes for training, testing, and validation is crucial in influencing the results. Forecasting the number of traffic accidents is important for environmental protection, as accidents can lead to air and water pollution and increase noise, negatively affecting human health and ecosystems.
road accident, pandemic, forecasting, neural networks, Poland, Czech Republic
AMA Style
Gorzelańczyk P, Ližbetinová L, Pečman J. Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models. Rocznik Ochrona Środowiska. 2024; 26. https://doi.org/10.54740/ros.2024.053
ACM Style
Gorzelańczyk, P., Ližbetinová, L., Pečman, J. 2024. Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models. Rocznik Ochrona Środowiska. 26. DOI:https://doi.org/10.54740/ros.2024.053
ACS Style
Gorzelańczyk, P.; Ližbetinová, L.; Pečman, J. Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models Rocznik Ochrona Środowiska 2024, 26, 603-615. https://doi.org/10.54740/ros.2024.053
APA Style
Gorzelańczyk, P., Ližbetinová, L., Pečman, J. (2024). Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models. Rocznik Ochrona Środowiska, 26, 603-615. https://doi.org/10.54740/ros.2024.053
ABNT Style
GORZELAŃCZYK, P.; LIŽBETINOVÁ, L.; PEČMAN, J. Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models. Rocznik Ochrona Środowiska, v. 26, p. 603-615, 2024. https://doi.org/10.54740/ros.2024.053
Chicago Style
Gorzelańczyk, Piotr, Ližbetinová, Lenka, Pečman, Jan. 2024. "Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models". Rocznik Ochrona Środowiska 26, 603-615. https://doi.org/10.54740/ros.2024.053
Harvard Style
Gorzelańczyk, P., Ližbetinová, L., Pečman, J. (2024) "Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models", Rocznik Ochrona Środowiska, 26, pp. 603-615. doi:https://doi.org/10.54740/ros.2024.053
IEEE Style
P. Gorzelańczyk, L. Ližbetinová, J. Pečman, "Predicting Road Accident Counts in Poland and the Czech Republic Using Neural Network Models", RoczOchrSrod, vol 26, pp. 603-615. https://doi.org/10.54740/ros.2024.053