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Abstract: Every year, there is a decline in the number of car accidents reported in Poland, the Czech Republic, and 
globally. While recent trends due to the pandemic have influenced these figures, the overall rate remains significant. 
Therefore, it is crucial to take measures aimed at reducing this number. The primary focus of this article is to analyze 
the traffic accident statistics for Poland and the Czech Republic. Annual data regarding traffic incidents in both countries 
has been scrutinized to achieve this. Projections for 2024 to 2030 have been developed based on police reports. Various 
neural network models were utilized to forecast the number of accidents. The findings indicate that the number of traffic 
incidents is likely to stabilize. This stabilization can be viewed in the context of the increasing number of vehicles on 
the roads and the expansion of new highways. Additionally, selecting sample sizes for training, testing, and validation 
is crucial in influencing the results. Forecasting the number of traffic accidents is important for environmental 
protection, as accidents can lead to air and water pollution and increase noise, negatively affecting human health and 
ecosystems. 
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1. Literature Review 

Road accidents involve incidents that result in injuries or fatalities to drivers, alongside causing property 
damage. According to estimates by the World Health Organization (WHO), approx. 1.3 million people die in 
traffic accidents each year. On a global scale, traffic accidents contribute to a 3% decrease in GDP for the 
average country. Traffic accidents are the primary cause of death for people aged 5 to 29 years. The United 
Nations General Assembly aims to reduce fatalities and injuries from traffic accidents by 50% by 2030 (World 
Health Organization 2018). 

A key factor in evaluating the seriousness of a traffic incident is its overall scope. Assessing accident se-
verity is vital for authorities to formulate effective traffic safety regulations with the goal of reducing accidents 
and mitigating hurts, fatalities, and ownership damage (Tambouratzis et al. 2014, Zhu et al. 2019). Before 
implementing measures to minimize accident severity, it is important to identify the primary factors that con-
tribute to it (Arteaga et al. 2020). A multi-node Deep Neural Network (DNN) model, which was proposed by 
(Yang et al. 2022), predicts different levels of injury, fatality, and ownership damage, allowing for a detailed 
and accurate assessment of the seriousness of traffic accidents (Gorzelanczyk & Huk 2022). 

Accident statistics are derived from various sources. Typically, government officials rely on relevant gov-
ernmental agencies to gather and analyze this data. Key sources of information include police reports, data-
bases from insurance companies, and hospital records. Consequently, there is an increasing trend in the trans-
portation sector towards more comprehensive data analysis of traffic accidents (Chen 2017). 

Intelligent transported systems are now the main data source for analyzing and predicting traffic events and 
MaaS (Dyczkowska et al. 2023). Information is gathered through GPS devices installed in vehicles in motion. 
Additionally, roadside microwave vehicle detection systems can continuously capture data regarding moving 
vehicles, including details such as vehicle type, speed, and traffic volume (Hudec & Cződörová 2022, Khaliq 
et al. 2019). In addition, significant volumes of traffic data can be gathered over a defined period using license 
plate recognition systems (Rajput et al. 2015). Social media also offers a potential source of information on 
traffic incidents, although the reliability of such reports may be limited by the inexperience of those providing 
the information (Zheng et al. 2018). 
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Utilizing a diverse array of data sources presents certain challenges before traffic accident information can 
be deemed valuable. Accurate analytical outcomes can be achieved by integrating various types of traffic ac-
cident data (Abdullah & Emam 2016). 

Statistical analysis with goal to evaluate the seriousness of the issue and to determine the relationships 
between traffic participants and accidents, performed (Vilaca et al. 2017). The results of their study support 
the introduction of stricter traffic safety measures and improvements to traffic law standards. 

Bąk et al. (2019) conducted a statistical study on traffic safety in a specific region of Poland, using the 
number of traffic accidents as a key indicator to investigate the causes of these incidents. This study utilized 
multivariate statistical analysis to examine the safety factors related to the causes of accidents. The specific 
traffic issue being examined determines the selection of data sources for accident analysis. Accident prediction 
and prevention accuracy is enhanced when statistical models are integrated with additional data from real 
driving conditions or insights derived from intelligent traffic systems (Chand et al. 2021). 

Forecasting the number of road accidents is important for logistics (Dyczkowska et al. 2023a) and environ-
mental protection (Cubranic-Dobrodolac et al. 2020, Čubranić-Dobrodolac et al. 2022), as accidents can lead 
to air and water pollution and increase noise, which negatively affects human health, ecosystems,  sustainable 
urban mobility (Chamier-Gliszczynski 2016) and system mobility (Chamier-Gliszczyński 2012, Chamier-
Gliszczyński 2012a). Road accidents often result in oil and chemical spills, which can contaminate the ground 
and groundwater and emit harmful substances into the atmosphere, contributing to the deterioration of air 
quality. In addition, accidents generate not only physical damage but also noise, which affects the quality of 
life of nearby residents, disrupting peace and leading to stress and health problems associated with prolonged 
noise exposure (Čubranić-Dobrodolac et al. 2022). 

The selection of data sources for accident analysis depends on the specific traffic issue being investigated 
(combined with additional data from actual driving conditions or observations obtained from intelligent traffic 
systems). In 2023, it was found that Poland experienced 5.57 traffic accidents per 10,000 people. During the 
same period, the population of the Czech Republic was 10.67 million, with 20,768 reported traffic incidents. 
This indicates that the Czech Republic had 3.15 times more traffic accidents per 10,000 people compared to 
Poland: 

 𝑁𝑅𝐴 ൌ
ேோ

ேூ
∙ 10000 (1) 

where: 
NR – quantity of road accidents, 
NI – quantity of inhabitants. 

 
The authors utilized the previously mentioned data to estimate the number of accidents occurring on road-

ways in Poland and the Czech Republic. They employed neural networks to predict the incidence rates of 
traffic road accidents in both countries (Chovancova et al. 2017). 

2. Materials and Methods 

A substantial number of traffic accidents take place on roads yearly. The expected figures have been affected 
by the recent decrease in traffic accidents due to the pandemic. However, even during the pandemic, road acci-
dents remain prevalent. Therefore, it is essential to make every effort to reduce these numbers and identify the 
types of routes that contribute to the highest incidence of traffic accidents (shown in Fig. 1, Fig. 2). 
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Fig. 1. Number of road accidents in Poland between 1990 and 2023 (Polish Police 2024) 
 

 

Fig. 2. Number of road accidents in the Czech Republic between 1990 and 2023 (Czech Statistics Office 2024) 
 

Specific neural network models were employed to estimate the frequency of traffic accidents in Poland and 
the Czech Republic. This method is advantageous as it simulates the workings of the human brain. A neural 
network comprises nodes that process input data along with corresponding weights, biases, and output data. 
Statistica software was used to identify the optimal weights during the analysis. The accuracy of the predictions 
produced by this approach depends on the selected model and its parameters (Stopka 2022). 
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A neural network can be understood as a mathematical framework that functions like the nervous system. 
Typically, these networks consist of multiple layers that collectively form their architecture. The initial layer 
processes various data types, such as text, images, numbers, and audio, through a training process. Before 
reaching a final decision, the network can evaluate numerous inputs. 

The essential elements of neural networks are artificial neurons, which function as mathematical models 
that replicate the behavior of biological neurons. These artificial neurons are akin to biological ones in that 
they accept multiple inputs but generate a single output value, much like the functioning of dendrites in real 
neurons. The development of artificial intelligence is heavily focused on neural networks, to create models 
that exhibit intelligent behavior, including the ability to establish a hierarchy of knowledge (Lake et al. 2017). 

Neural networks find applications across a diverse array of fields. For instance, the power systems enable 
users to stream on-demand series by analyzing their viewing history to recommend films that align with their 
preferences. Additionally, neural networks facilitate text translation on platforms like Google Translate and 
help personalize product suggestions for bidders in online auctions. Moreover, neural network forecasting is 
employed to predict the frequency of traffic incidents (Marr 2019, Oronowicz-Jaśkowiak 2019) and production 
processes (Kielc et al. 2018). 

A chosen neural network model is utilized to predict the occurrence of traffic accidents in the counties being 
studied. One of the key benefits of this technology is its ability to replicate the functioning of the human brain. 
A neural network consists of nodes that include inputs, weights, biases, and outputs (Wu et al. 2016, Yu 2019). 

Models of the nervous system's operation are used to create mathematical structures known as neural net-
work approaches. The network architecture is often composed of several levels. Through a process known 
as training, the first of these, the input layer, retains knowledge about text, numbers, pictures, and sound. 
Thousands of inputs may be used in this process, from which the network extracts certain conclusions. 
The concealed layer, sometimes known as the transition layer, is another layer that has been studied. Such 
layers may be many. The output layer (Fig. 3) is the final layer covered (Yadav & Rishi 2022). 

The Statistica software, featuring integrated modules for artificial neural networks, refined the weights dur-
ing the testing process. A multilayer perceptron (MLP) neural network, which included layers of hidden neu-
rons, was employed for the predictions. In the cases examined, the number of neurons in the hidden layer 
varied from two to eight. The output layer comprised a single neuron that provided the time series output 
values for the number of traffic incidents (Hudec et al. 2021). The success of the predictive techniques em-
ployed depends on the chosen model and its parameters (Witt 2023). Predictive accuracy was evaluated based 
on various prediction errors calculated using specific formulas (2-7): 

 𝑀𝐸 – mean error 

 𝑀𝐸 ൌ
ଵ


∑ ൫𝑌 െ 𝑌൯

ୀଵ  (2) 

 𝑀𝐴𝐸 – mean error 

 𝑀𝐴𝐸 ൌ
ଵ


∑ ห𝑌 െ 𝑌ห

ୀଵ  (3) 

 𝑀𝑃𝐸 – mean percentage error 

 𝑀𝑃𝐸 ൌ
ଵ


∑

ି



ୀଵ  (4) 

 𝑀𝐴𝑃𝐸 – mean absolute percentage error 

 𝑀𝐴𝑃𝐸 ൌ
ଵ


∑

หିห



ୀଵ  (5) 

 𝑆𝑆𝐸 – mean square error 

 𝑆𝑆𝐸 ൌ ටଵ


∑ ൫𝑌 െ 𝑌൯

ଶ
ୀଵ   (6) 

 𝑀ଶ – Theila measure 

 𝑀ଶ ൌ
∑ ሺିሻమ
ಿ
సభ

∑ 
మಿ

సభ
  (7) 

where: 
𝑛 – length of the forecast horizon, 
𝑌 – observed value of road accidents, 
𝑌  – projected value of road accidents. 
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Fig. 3. Neural network models (Wójcik 2014) 
 

To forecast the number of future traffic accidents, neural network models were utilized that demonstrated 
the lowest mean percentage error (MPE) and mean absolute percentage error (MAPE). 

3. Results 

Data for the Czech Republic were obtained from the Czech Statistical Office (Czech Statistics Office 2024), 
while data from the Polish Police covering the years 1990 to 2023 (Polish Police 2024) predicted the annual 
amount of traffic accidents on Polish roads. In every case, two random sample sizes were assumed when using 
Statistica software for research: 
1. teaching 70%, test 15%, validation 15%. 
2. teaching 80%, testing 10%, validation 10%, 
using 20, 40, 60, 80, 100, and 200 learning networks, for which the MP error value was negligible (Table 1-4). 
 

Study Results on Traffic Accidents in Poland (Fig. 4): 
 Accident Trends: 

o The study suggests that there may be a slight increase in traffic occurrences on Polish roads. 
o Nonetheless, the total number of accidents is anticipated to stabilize in the next years. 

 Impact of Sample Proportions: 
o The number of random samples used influences the results. 
o A larger proportion of the training group relative to the test and validation groups reduces 

the average percentage error. 
 Error Rates: 

o First Exam (80-10-10): 
 Learning Group: 80% 
 Test Group: 10% 
 Validation Group: 10% 
 Average Percentage Error: 4.63% 

o Second Exam (70-15-15): 
 Learning Group: 70% 
 Test Group: 15% 
 Validation Group: 15% 
 Average Percentage Error: 5.68% 

 Factors Influencing Findings: 
o The findings are affected by:  

 An increased number of cars on roads in Poland. 
 The impact of the Covid-19 pandemic. 
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Fig. 4. Projected quantity of road accidents for 2022-2030 in Poland 
 

Study Findings on Traffic Accidents in the Czech Republic (Fig. 5): 
 Overall Trends: 

o In the next years there may be a slight increase in traffic accidents on Czech roads. 
o Ultimately, the amount of accidents is expected to stabilize in the nation. 

 Influence of Sample Size: 
o The results are significantly affected by the choice of random sample size.  

 An increased proportion of the training group in relation to the test and validation groups contributes 
to a reduction in the average percentage error.  

 Error Rates: 
o Second Test (80-10-10): 

 Average Percentage Error: 3.75% 
o Learning Group (70%): 
o Test Group: 15% 
o Validation Group: 15% 
o Average Percentage Error: 3.94% 

 Factors Influencing Findings (Šarkan et al. 2024): 
o The results are influenced by: 

 The impact of the recent epidemic. 
 The growing number of automobiles on Czech roads. 
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Fig. 5. Projected quantity of road accidents for 2022-2030 in the Czech Republic 

4. Conclusions 

Neural networks were utilized within the Statistica environment to forecast the occurrence of accidents 
in both Poland and the Czech Republic. The software assessed the weights used in the study to improve the ac-
curacy of predictions, particularly regarding mean absolute error and mean absolute percentage error. 

The collected data indicates that it may still be possible to anticipate a consistent trend in the number of 
traffic accidents, with a slight increase expected in each analyzed country. This observation can be contextu-
alized by considering the ongoing pandemic and the rising number of vehicles on the roads. The projected 
forecast errors demonstrate the reliability of the models. 

Given the forecasts produced, it is essential to implement measures aimed at further reducing traffic accidents. 
One potential strategy could be raising fines for traffic violations on Polish roads, which is set to commence on 
January 1, 2022. The pandemic's significant impact on the frequency of road accidents has clearly influenced the 
study's outcomes. For future research, the authors plan to explore additional statistical methods and consider 
various factors that might impact accident rates. These factors could include traffic volume, weather conditions, 
driver's age, and the application of exponential methods to assess the occurrence of traffic incidents. 

This research was supported by the Project 05SVV2302 "Methodology proposal in the context of investigating 
the influence of the height profile of roads on the reduction of emissions from road transport". 
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