Rocznik Ochrona Środowiska 2022, vol. 24, pp. 260-275


peopleMaciej Karczewski1 Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.orcid, peopleBartosz Kaźmierczak2 orcidpeopleAndrzej Michalski1 orcidpeopleLeszek Kuchar1 orcid

institution 1. Wroclaw University of Environmental and Life Sciences, Poland
2. Wroclaw University of Science and Technology, Poland
mail author Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
doi1 https://doi.org/10.54740/ros.2022.019
download pdfdownload docxpprocedure
abstract


The distribution of maximum rainfall level is not a homogeneous phenomenon and is often characterized by multimodality, and often the phenomenon of heavy right-hand tail. Modelling this phenomenon using classic probability distributions leads to ignoring multimodality, and thus underestimating or overestimating the predicted values in the tail tails – the most important from the point of view of safe dimensioning of drainage systems. To avoid the abovementioned difficulties, a non-parametric kernel estimator method of maximum precipitation density function was used (on the example of rainfall data from a selected station in Poland). The methodology proposed in the paper (for use on any rainfall data from other meteorological stations) will allow the development of more reliable local models of maximum precipitation.

 keywords


maximum precipitation; kernel estimation; hydrology

fulltext

 

share

AMA Style
Karczewski M, Kaźmierczak B, Michalski A, Kuchar L. Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators. Rocznik Ochrona Środowiska. 2022; 24. https://doi.org/10.54740/ros.2022.019

ACM Style
Karczewski, M., Kaźmierczak, B., Michalski, A., Kuchar, L. 2022. Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators. Rocznik Ochrona Środowiska. 24. DOI:https://doi.org/10.54740/ros.2022.019

ACS Style
Karczewski, M.; Kaźmierczak, B.; Michalski, A.; Kuchar, L. Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators Rocznik Ochrona Środowiska 2022, 24, 260-275. https://doi.org/10.54740/ros.2022.019

APA Style
Karczewski, M., Kaźmierczak, B., Michalski, A., Kuchar, L. (2022). Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators. Rocznik Ochrona Środowiska, 24, 260-275. https://doi.org/10.54740/ros.2022.019

ABNT Style
KARCZEWSKI, M.; KAŹMIERCZAK, B.; MICHALSKI, A.; KUCHAR, L. Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators. Rocznik Ochrona Środowiska, v. 24, p. 260-275, 2022. https://doi.org/10.54740/ros.2022.019

Chicago Style
Karczewski, Maciej, Kaźmierczak, Bartosz, Michalski, Andrzej, Kuchar, Leszek. 2022. "Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators". Rocznik Ochrona Środowiska 24, 260-275. https://doi.org/10.54740/ros.2022.019

Harvard Style
Karczewski, M., Kaźmierczak, B., Michalski, A., Kuchar, L. (2022) "Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators", Rocznik Ochrona Środowiska, 24, pp. 260-275. doi:https://doi.org/10.54740/ros.2022.019

IEEE Style
M. Karczewski, B. Kaźmierczak, A. Michalski, L. Kuchar, "Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators", RoczOchrSrod, vol 24, pp. 260-275. https://doi.org/10.54740/ros.2022.019