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Abstract: Indoor air quality has a direct impact on human health. Thus, it's essential to comprehend the various aspects 
of indoor air quality. It supports both the implementation of preventative measures and the monitoring of indoor air 
pollution. Monitoring and forecasting air pollution is extremely essential, especially in developing countries like India. 
This study proposes a system that employs ESP8266 (NodeMCU) data sent to the cloud to monitor the levels of air 
pollutants such as ozone, particle matter, carbon monoxide, carbon dioxide, temperature, and total volatile organic 
compounds. Our sensors include the ozone sensor MQ-131, the dust sensor GP2Y1010-AU0F, the TVOC sensor 
AGS02MA, the carbon monoxide sensor MQ-9, the carbon dioxide sensor MQ-135, and the humidity sensor DHT11. 
The IoT device continuously shows the indoor air quality level (IAQL). The next step was to accurately anticipate the 
Internal Air Quality Level (IAQL) and pollution levels from dangerous gases for the next seven days using the LSTM, 
Seasonal ARIMA, and Linear Regression models. The Authors could accurately predict the observations of the 
following seven days after using data from the previous ninety days to create our best model. This implies that our 
model can accurately predict the values for each parameter with an accuracy of at least 95%. Therefore, we believe 
such a solution would be advantageous if a large-scale installation were implemented. If consumers can remotely verify 
the air quality in their homes, the pollution in the interior atmosphere will decrease. This has the potential to make 
civilization healthier. 
Keywords: Internet of Things, Indoor Air Quality, Linear Regression, LSTM, SARIMAX 

1. Introduction 
In 2020, household air pollution was linked to over 237000 fatalities worldwide, including over 237000 

deaths of children under five, according to the World Health Organization. The Central Pollution Control 
Board reported that Ahmedabad had the fourth-most polluted air in the nation. Different air pollutants like 
PM2.5, PM10, temperature, humidity, CO2, CO, O3, VOCs etc. Here, the authors discuss the causes of many 
contaminants and their effects on health. 

Particulate Matter (PM2.5, PM10) combines liquid droplets and solid particulate debris in the atmosphere. 
Ash, smoke, dust, and dirt are a few examples. Though lung damage, respiratory problems, etc., might be made 
worse by PM2. Conversely, inhaling large airborne particles can result in heart attacks, bronchitis, high blood 
pressure, and asthma episodes. The typical summer temperature ranges from 23 to 25.5°C, whereas the typical 
winter temperature ranges from 20 to 23.5°C due to differences in humidity and climate. Stroke, heart failure, 
and respiratory infections can all be brought on by frequent temperature fluctuations. Mist, fog, and poorly 
functioning ventilation systems are a few instances that indicate the amount of humidity both inside and out-
side, weariness, lethargy, restlessness, and skin damage caused by humidity. 

Carbon dioxide is an odorless, colorless, slightly acidic-tasting, non-flammable gas at ambient temperature. 
Cement manufacturing, deforestation, and other processes release CO2. One of the main health problems re-
sulting from breathing in too much carbon dioxide is headaches and breathing difficulties. Colorless, tasteless, 
and odorless, carbon monoxide is a combustible gas that is marginally less dense than air. Examples include 
the smoke from cigarettes, burning charcoal, and running automobiles. Overexposure to carbon monoxide can 
result in heart failure, neurological system failure, and brain damage. It is a pale blue gas with a strong odor 
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composed of three oxygen atoms. Ultraviolet radiation contains ozone. Ozone causes congestion, throat irrita-
tion, coughing, and chest pain. VOCs are often defined as organic compounds with a high vapor pressure at 
standard room temperature. Moth repellents, aerosol sprays, wood preservatives, and air fresheners are a few 
examples. VOCs can produce nausea, recurrent headaches, and irritation of the nose, eyes, and throat.  

As seen in the following section, several researchers have employed various methods and strategies to 
address these health concerns and deaths. 

2. Literature Review 
Various air pollutants, such as CO2, CO, PM2.5, PM10, and volatile organic compounds (VOCs), influence 

internal air quality, which can have detrimental health effects. Poor air quality has been associated with various 
health issues. It is a major factor in the spread of COVID-19 Agarwal et al. (2020). 5 million people die +yearly 
from illnesses caused by poor indoor air quality. Medical care costs due to poor indoor air quality exceed $150 
billion in the USA. Poor IAQ is in the top five environmental threats to health and well-being worldwide Saini 
et al. (2020). Indoor air quality (IAQ) is a critical factor affecting health and well-being, given that humans spend 
90% of their time indoors Liu et al. (2021). Indoor air pollution is overlooked compared to outdoor air pollution, 
even though indoor air pollution levels are twice as high as outdoor air pollution levels Javier et al. (2021). 

Researchers have studied IAQ prediction and forecasting methods to address this issue, using machine 
learning and sensor technologies to develop accurate models for real-time monitoring and warning systems. 
Wei et al. (2019) conducted a literature review about Machine Learning and statistical models for predicting 
IAQ. PM2.5 and PM10 were the air pollutants that were studied the most. The most popular statistical models 
are ANN, Multiple Linear Regression, partial least squares, and decision trees. Krishan et al. (2019) proposed 
an LSTM algorithm to predict O3, PM2.5, NOx, and CO concentrations in an area of NCT-Delhi. The LSTM 
model was applied and found to be more effective in handling complexities and accurately forecasting air 
quality. Many deep-learning models can be used to determine indoor air pollutants. Artificial Neural Networks 
(ANN) and Reinforcement Learning (RL) models are good at modeling the complex relationships between 
inputs and outputs in non-linear systems, even when those systems are not fully understood Agarwal et al. 
(2020) and Nan et al. (2021), proposed an ANN model to forecast concentrations of pollutants, namely O3, 
NO2, PM2.5 and PM10 for the current and next 4 days. The model is also fitted with real-time correction to 
change forecasts dynamically based on data from the past few days. 

Computational fluid dynamics (CFD) is a method to analyze and predict the behavior of fluids and gasses 
when they flow through an environment. It can be accomplished by utilizing energy consumption and regulat-
ing thermal comfort. To model the time-series data of PM2.5, Dhakal et al. (2021) proposed a deep LSTM 
model with parameters including dew, ambient pressure, wind speed, humidity, maximum ambient tempera-
ture, and minimum ambient temperature. Kalaivani and Mayilvahanan (2021) review many papers using the 
same and predicting IAQ using ML algorithms. A particle swarm optimizer based on CFD combined with 
a Back-propagation neural network (BPNN) is used to predict concentrations of CO2 and PM2.5 Li et al. (2022). 
Ventilation can be used to create environments with IAQ. Tian et al. (2022) also use a BPNN to predict indoor 
environment indicators. They used parameters such as predicted mean vote, draft rate, air age, and air change 
efficiency to predict energy performance and IAQ. In urban areas, the AQI reaches very low levels due to 
several factors, such as vehicular emissions, high traffic, meteorological conditions, and other natural factors. 
PM2.5 is a very harmful pollutant in Kathmandu Valley, Nepal. ML algorithms are used to predict indoor air 
quality when continuous monitoring is not possible through smart sensors. Kapoor et al. (2022) trained ten 
algorithms to predict IAQ using CO2 concentrations. They concluded that the optimized Gaussian process 
regression (GPR) outperforms the other algorithms.  

Internet of Things (IoT) based sensors are used nowadays to measure IAQ dynamically. Sensors can yield 
incorrect values when trying to predict IAQ. To tackle this, Zhao et al. (2019) proposed an IAQ detector that 
measures the IAQ data, which can be transmitted using wired communications, short range wireless commu-
nications and directly to the cloud. End users can monitor the IAQ of their homes and offices everywhere. 
Stefano et al. (2019) proposed an HVAC system that considers user habits and IAQ provided by IoT sensors. 
The data from the sensors is then used to improve the accuracy of estimation of the occupancy rate in the 
building to prevent discomfort. William et al. (2019) propose an ML algorithm based on a Deep Reinforcement 
Learning (DRL) Artificial Intelligence algorithm to control air conditioners and ventilation fans to maintain 
thermal comfort and air quality while minimizing energy consumption. Warning systems can be deployed to 
alert people if the air quality index (AQI) reaches a critical level. Balram et al. (2019) also estimated PM2.5 
values using a Bayesian regularized neural network. They used a Support Vector Machine (SVM) classifier 
on the estimated PM2.5 concentrations and proposed an air quality warning system. Vagner et al. (2020) con-
ducted sensor validation through three ML algorithms to classify predicted values as correct or incorrect. 
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The algorithms were Random Forest (RF), K-Nearest Neighbor (K-NN), and Multi-Layer Perceptron. 
This highlights the importance of air quality control systems and choosing important pollutants for IAQ pre-
diction. Similarly, Ha et al. (2020) used the Kalman filter to combine the IAQ index (IAQI) and humidex data 
to form an enhanced indoor air quality index (EIAQI). IAQ readings from the sensors can be sent directly to 
the cloud. Kodali et al. (2020) monitor IAQ and send alerts to the end user over the Internet. Heating, ventila-
tion, and air conditioning systems (HVAC) are also used to regulate thermal comfort and acoustics. However, 
they can be the most energy-consuming among the air quality control systems. Shanmugaraja et al. (2021) 
proposed a system that reads data from sensors and uploads it to the Thingspeak cloud using the Thingspeak 
API. The data is then monitored and analyzed on the Thingspeak platform. Liu et al. (2021) used a Zigbee 
wireless network to transmit the data to a database in the cloud through a collector gateway. The data is stored 
in Modbus RTU format. Tagliabue et al. (2021) propose a system consisting of an ANN trained on monitored 
data that triggers ventilation through IoT communication. Xie et al. (2021) proposed a Bayesian network (BN) 
model to forecast AQI and warn users about the risk of poor air quality. The authors concluded that exhaust-
ively using the proposed BN model can achieve a monitoring and early warning accuracy rate of 90%. Rastogi 
and Lohani (2024) combined temperature, humidity, CO, PM10, PM2.5 and CO2 for the same. 

Furthermore, they used an extended Kalman Filter to clean up the data and make it more reliable by iden-
tifying and removing inconsistencies such as missing data points, errors, and outliers. Majdi et al. (2024)  
developed a neural network that takes inputs such as temperature, humidity and CO2 from a control and a mon-
itoring system and outputs the VOCs in the air. Many pollutants can be fused together to predict IAQ. 

According to a literature review, no author has examined interior air quality while considering every con-
taminant. The majority of procedures focus on PM2.5 and PM10. However, research suggests that PM2.5 and 
PM10 are not the only pollutants that affect health. This article discusses temperature, humidity, CO2, CO, O3, 
VOCs, PM2.5, and PM10 air pollutants. The authors have created an Internet of Things device to measure the 
amounts of different pollutants. Furthermore, the authors have forecasted pollution levels for the next seven 
days using machine learning. 

3. IoT-based internal Air Quality Monitoring System Prototype 
3.1. Choice and application of sensors in this study 

When computing the indoor air quality, the prototype considered the contaminants temperature, humidity, 
CO2, TVOC, PM2.5, PM10, CO, and O3. The sensor used to determine the pollution parameters for the indoor 
air quality is shown in Table 1. Figures 1 and 2, respectively, display the prototype and the simulation for the 
prototype. 

 
Table 1. Sensors and their technical details 

Pollutant Sensor Used Technical Details 

O3 MQ-131 Sensitivity: Rs (in 300 ppm O3) / Rs (in air) ≥ 2 
Range of measurement:10～1000 ppm Ozone 

PM2.5 PM2.5 GP2Y1010-AU0F 
Sensitivity: 0.1 mg/m3 at 0.5 V 
Range of measurement: 500 μg/m3. 
Particle Minimum Detection Level: 0.8 M 

PM10 PM2.5 GP2Y1010-AU0F 
Sensitivity: 0.1 mg/m3 at 0.5 V 
Range of measurement: 500 μg/m3. 
Particle Minimum Detection Level: 0.8 M 

CO MQ-9 Sensitivity: Rs (in 300 ppm O3) / Rs (in air) ≥ 2 
Range of measurement: 10～1000 ppm Ozone 

CO2 MQ-135 Sensitivity: 20-2000 ppm 
Range of measurement: 10 to 1,000 ppm  

Humidity DHT11 Humidity Accuracy(%): Â±5.0 
Range of measurement (%): 20 to 90 

TVOC AGS02MA Typical accuracy (%): 25% reading 
Range of measurement: 0-99999 ppb 

Wifi Module ESP8266(NodeMCU) Typical accuracy: 0.3 cm 
Range of measurement: 2 cm to 400 cm 

Display LCD Screen – 
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Fig. 1. Prototype to measure Internal Air Quality Index 
 

 
Fig. 2. Module Simulation  

3.2. Internal air quality level calculation 
The authors have evaluated the indoor air quality level (IAQL) in this study using the humidity level and 

the air quality index for pollutants inside the home. 
The following linear interpolation technique can determine the indoor air pollution index for air quality 

(IP). 

IP = ((Ii – Io /BPi – BPo) (CP – BPo) ) + Io   (1) 

where: 
IP – the Pollutant index P, 
CP – the abbreviated pollutant level P, 
BPi – The level threshold at which CP is exceeded or remains constant, 
BPo – The level threshold at which Cp is equal to or less than, 
Ii – the AQI value that is associated with BPi, 
Io – the AQI value that is associated with BPo. 

 
The level of pollution breakpoints are given in Table 2. 
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Table 2. Pollutant concentration breakpoints 

Breakpoints 
Level  

of Health IAQI Ozone 
(ppm) 
8-hour 

PM2.5 
(g/m3) 
24-hour 

PM10 
(g/m3)  
24-hour 

CO2 (ppm) 
8-hour 

CO 
(ppm) 
8-hour 

Total VOC 
(mg/m3) 
8-hour 

0-0.054 0-12 0-54 400-600 0-4.4 0-0.3 Excellent 0-50 
0.055-
0.070 12.1-35.4 55-154 700-1000 4.5-9.4 0.3-1 Good 51-100 

0.071-
0.085 35.5-55.4 155-254 1100-1500 9.5-12.4 1-3 Moderate 101-150 

0.086-
0.105 55.4-150.4 255-354 1600-2000 12.5-15.4 3-10 Poor 151-200 

0.106-
0.200 150.5-250.4 355-424 >2100 15.5-30.4 10-25 Unhealthy 201-300 

3.2.1. Humidex 

When relative humidity exceeds about 90% in hot conditions, sweat ceases evaporating to cool the body; 
hence, heat from interior sources can elevate body temperature and cause disease. Canadian meteorologists 
developed the humidex as a dimension-based attribute that utilized dew point theory that included the effects 
of humidity and heat with breakdowns provided by Agarwal (Agarwal et al. 2020) to represent how hot or 
chilly an average individual feels during different seasons. Here is the calculation for the humidex.  𝐻 =  𝑇 +  ቀହଽቁ ቀ6.112 ×  107.5 ∙ ቀ ்ଶଷ଻ . 7 + 𝑇ቁ ∙ ቀோுଵ଴଴ቁ –  10ቁ (2) 

where: 
T – temperature from Sensor, 
RH – Relative Humidity from Sensor. 

 
Table 3. Humidex Range 

Range Comfort level 
16-29 Very good 
30-39 Good 
40-45 Poor 
46-54 Very poor 
55-60 Dangerous 

3.2.2. IAQL calculation 

Based on the calculation of IAQI and Humidex, the authors have given weights for both IAQI and Humidex 
from -2 to 2. After giving weight, the authors added both weights and decided on the indoor air quality level 
range. According to all calculations, the display continuously displays the IAQL and will change each after 8 
hours. Figure 3 shows the complete computation of the Internal Air Quality Index based on weight, which 
depends on comfort and health level. 

 

Fig. 3. IAQL Calculation 
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3.3. Data collection 
In Ahmedabad, Gujarat, India, data on pollutants in the air readings were gathered between May 19, 2023, 

and July 19, 2023. Information collected locally using the designated sensors over 24 hours makes up the 
testing dataset for the models. 

3.4. ML algorithms 
3.4.1. Linear regression 

Models based on linear regression are among the most widely used types of predictive analysis and one of 
the most basic types of statistical approaches. They employ an equation and a linear approach to show how 
two variables relate to one another. Several explanatory variables are used in multiple linear regression, or just 
"multiple regression", a statistical technique that predicts the values of a response variable. Multiple linear 
regression (MLR) aims to model the linear connection between response variables and explanatory factors. 
The multiple linear regression equation is as follows: 𝑥௜ = 𝛽଴𝑦௜଴ + 𝛽ଵ𝑦௜ଵ + − − −− − − +𝛽௡𝑦௜௡  (3) 

where β0, β1, ---- βn are coefficient, yi0, yi1, --- yin are features. 
3.4.2. SARIMAX 

A set of observations that are consistently made over time is called a time series. Time series analysis 
requires understanding multiple aspects of the series' underlying structure to provide more accurate and in-
sightful projections. Different time series models are accessible. The model the authors have employed is the 
SARIMAX (Exogenous variables plus Seasonal Autoregressive Integrated Moving Average). Three parame-
ters make up a SARIMAX model: n, r, and𝜌. Where n represents the degree of stationary, r is the autocorrela-
tion coefficient, 𝜌 is the correlogram. The ARIMA model, in this instance, has moving-average order Q,  
integration order D, and autoregression order P. For each time step t, the SARIMAX(n, r, ρ) (P,D,Q,s) model 
is represented as for n exogenous variables.  𝑦௧ = (∑ 𝜙௡𝑦ଵି௡ + ɛ௧௣௧ୀଵ ) (4) 

3.4.3. LSTM 

An LSTM cell is a component that can be used to construct a bigger neural network. The LSTM module is 
far more sophisticated than popular construction blocks like fully-connected layers, which are just matrix mul-
tiplication of the input and the weight tensor to produce an output tensor. 

It involves a hidden state h, a cell memory c, and a one-time step of an input tensor x. Initially initializing 
the hidden state and cell memory to zero is possible. Then, inside the LSTM cell, x, c, and h will be multiplied 
by various weight tensors and will experience several activation functions. The final products are the concealed 
state and updated cell memory. These updated c and h will be used in the "next time step" of the input tensor. 
Until the final step is completed, the LSTM cell's output will be its hidden state and memory. 

The forget gate (Fg) decides whether to keep or forget previous data depending on the network's depend-
encies. The input gate (Ig) chooses to update and store fresh data in its current state. The output is generated 
by the output gate (Og). Lastly, long-term past and future data is stored in the memory cell state Ct. The input 
and output information are indicated by the values xt and ht, respectively, in the LSTM unit. The dot product 
operation and the sigmoid activation function manage the LSTM unit's information transformation. The pos-
sible values of the sigmoid function are 0 and 1. All information is transmitted if the dot product of the sigmoid 
operation provides a value of 1, and no information is transmitted if it yields a value of 0. 

One LSTM cell's equation is precisely as follows: 𝑓௧ = 𝜎௚(𝑊௙𝑥௧ + 𝑈௙ℎ௧ିଵ + 𝑏௙)  (5) 𝑖௧ = 𝜎௚(𝑊௜𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑏௜) (6) 𝑂௧ = 𝜎௚(𝑊଴𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑏଴) (7) ~ 𝑐௧   = 𝜎௖(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ + 𝑏௖) (8) 𝑐௧ = 𝑓௧ʘ𝑐௧ିଵ + 𝑖௧ʘ~ 𝑐௧   (9) ℎ௧ = 𝑜௧ʘ𝜎௛(𝑐௧) (10) 

where W is for weight, b is the offset term, and σ is the sigmoid activating function. 
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Here, equation (2) reduces the value of the forget gate memory cell by one at a time t - 1 to determine 
whether the information is discarded or kept. It computes the sigmoid range to accomplish this. The input gates 
in (3) and (4) scale the memory cell state value at a given time t, much like a forget gate does. Eq. (5) adds 
memories from the past and the present. Finally, the output of the cell state is given in (6) and the output gate 
is shown in (7). 

4. Results and Discussion 
The offered models are assessed, and the air pollutant concentrations are forecasted using the IoT-collected 

dataset over the following seven days. Root Mean Squared Error, or RMSE, is the statistic used in the present 
investigation to evaluate the efficiency of the different models. The authors have used the root mean square 
error to gauge the accuracy of data prediction. The RMSE calculates the variation between a vector of actual 
values and the vectors of expected values. The RMSE values of the models are shown in Table 4. 

 
Table 4. RMSE values of Linear Regression, SARIMA, LSTM 

Pollutants Linear Regression SARIMAX LSTM 
Humidity 41.82 5.4639 2.312 
Temperature 54.494 11.017 4.023 
PM2.5 33.213 5.8748 5.0862 
PM10 11.263 6.4209 3.026 
CO2 87.11 8.8733 2.2136 
CO 36.852 5.2997 2.6789 
O3 15.95 5.0862 3.2654 
TVOC 14.86 5.099 3.5551 

 
Regression coefficients can be easily understood by visualizing them as linear slopes. The information from 

the linear regression model is displayed in Figure 4, and the numerical output is in Table 4. A fitted line plot 
of the relationships between time and concentration of CO2 (Figure 4(1)), time and concentration of CO (Fig-
ure 4(2)), time and concentration of humidity (Figure 4(3)), time and concentration of O3 (Figure 4(4)), time 
and concentration of PM2.5 (Figure 4(5)), time and concentration of PM10 (Figure 4(6)), time and temperature 
(Figure 4(7)), and time and TVOC (Figure 4(8)) is used to depict this graphically. 

Figure 5 displays the obtained results: with the SARIMAX model, the predicting line (orange and green in 
Figure 5) nearly lies on the given values (blue in Figure 5). The differencing method was not even necessary. 
Using this model, the authors forecasted the values for seven days in the future. Here, subfigures 1 to 8 repre-
sented prediction and actual concentration for CO2, CO, humidity, O3, PM2.5, PM10, temperature, and TVOC, 
respectively. 

A line plot of the test dataset (black) against the predicted outcomes (blue) is made in Figure 6 to demon-
strate the context-appropriate persistence of the LSTM model forecast. Here, subfigures 1 through 8 showed 
the expected and actual concentrations for the following variables: temperature, TVOC, humidity, O3, PM2.5, 
PM10, and CO2. 

The linear regression prediction is displayed in Figure 4. The predictions made with SARIMAX and LSTM 
are displayed in Figure 5 and Figure 6, respectively. This makes it abundantly evident that LSTM fits better 
than linear regression and SARIMAX, as shown quantitatively in Table 4. 
  



Study of AQI Monitoring System of Indoor Environment… 159
 

 
 
 

 
Fig. 4. Actual and prediction results from Linear Regression 
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Fig. 5. Actual and prediction results from SARIMAX 
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Fig. 6. Actual and Predicted Results using LSTM 
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5. Conclusions 
It's important to stay aware of the potential problem to avoid circumstances when normal indoor concen-

trations could turn dangerous. Additionally, the idea of the Internet of Things (IoT) has enhanced environmen-
tal research by enabling the availability of low-cost sensors. All of the Internet of Things sensors for potentially 
hazardous pollution concentrations have been included in this study. The authors have employed SARIMAX, 
LSTM, and linear regression machine learning methods to predict the pollutant concentrations for the upcom-
ing seven days. It is evident by comparing the RMSE values of each model that the LSTM model has the 
lowest RMSE values for temperature, humidity, PM2.5, PM10, CO2, CO, O3, and TVOC, respectively, at 2.312, 
4.023, 5.0862, 3.026, 2.2136, 2.6789, 3.2654, and 3.5551. This model will be used to forecast the Internal Air 
Quality Index for the next seven days. A more powerful model that collects data hourly, extends the range of 
a wifi module or performs seasonal studies will be created in the future to obtain better findings. Additionally, 
new metaheuristic models will be used for this dataset. 

 
The authors extend their appreciation to the Deanship of  Research and Graduate studies at King Khalid 

University for funding this work through Large Groups Project under grant number RGP2/410/45. 
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