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Abstract: The intensity of heat exchange between the boiling emulsion and the enclosing surfaces is associated with 
the physical phenomena of the formation, growth, and destruction of vapour bubbles of the low-boiling component in 
the liquid phase. This article presents a methodology to assess the intensity of heat exchange processes. Using this 
technique, it is possible to predict the energy parameters of heat exchange equipment and the degree of intensification 
of heat transfer processes. 
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1. Effects of Intense Heat Transfer in Liquid Mixtures 
The intensity of heat exchange processes during contact of the emulsions with a low-boiling dispersed 

phase with the surfaces of the heat exchangers depends on the characteristics of the emulsions and heat transfer 
processes in the flow structure and at the contact boundary with the surface. An important factor is the for-
mation of vapour bubbles in superheated drops to estimate the specific heat flux value. The degree of incom-
pleteness of the transition of a boiling drop from a homogeneous liquid to a homogeneous vapour state greatly 
determines heat transfer efficiency. 

When the temperature of the heating wall is higher than that of saturated vapours of the dispersed low-
boiling phase, the droplets are overheated near the pipeline wall, which contributes to the appearance of steam 
nuclei in their volume. 

It is known that when heating emulsions with a continuous medium, in contrast to homogeneous liquids, it 
is associated with the so-called delayed boiling of the dispersed phase, which expands the range of the bubble 
boiling regime (Albanese et al. 2019, Adhikari et al. 2016, Dietzel et al. 2017, Gasanov & Bulanov 2015, 
Dąbek et al. 2018, Dąbek et al. 2019). In this case, the temperature of the heating surface Tn can be much 
higher than that of saturated vapours Tsat of the dispersed phase, reaching a difference of one hundred or more 
degrees and preventing the transition to the film boiling mode. In (Chandrapala et al. 2012, Badve et al. 2012, 
Ganesan et al. 2015, Feng et al. 2015, Pavlenko 2018), the boiling of emulsions is presented based on the 
classical mechanisms of boiling in an unlimited volume of homogeneous liquids, focussing on the study of the 
effect of solid microscopic particles in a superheated liquid on the activation of boiling centres. In real heat 
and mass transfer (HMT) processes, a dispersed low-boiling phase should be considered as a means of initiat-
ing centres of vaporisation during the explosive destruction of drops and the formation of vapour-phase bub-
bles of critical size. Obviously, this effect must be associated with a developed interfacial interface with a high-
boiling continuous medium, which mediates heat transfer from the heating surface. The boiling process cannot 
be limited to heat transfer only, without explicitly considering momentum transfer, particularly viscous shear 
stresses at high emulsion flow velocity gradients in the near-wall zone near a solid surface. 

The study of even only one of the boiling modes, a steam explosion, i.e. a very rapid increase in pressure 
in a closed volume, and fine fragmentation (crushing) of large fractions of a hot liquid, which ensures this 
vapourisation, has not yet led to unambiguous ideas about the mechanisms of these physical phenomena (Cher-
nin & Val 2017, Sun et al. 2021, Koshlak & Pavlenko 2019). Each of these processes, which has arisen, stim-
ulates the development of another process. This interconnectedness of the processes of triggering and fine 
fragmentation – their "conjugation" – significantly complicates the identification of individual, specific fea-
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tures of each of them and introduces uncertainty into their description even within the framework of phenom-
enological approaches. These subprocesses are microseconds, or at best, tens of microseconds. Therefore, to 
determine the specific heat flux in emulsions, systematic analytical studies of physical phenomena that inten-
sify the HMT processes during emulsions' boiling are necessary. 

2. Increasing the Vapour Volume of a Boiling Drop of Emulsion 
During the evaporation process, energy is expended both from the side of the low-boiling dispersed phase 

and from the side of the base liquid, for example, water and oil in an oil-in-water emulsion. Therefore, the 
temperatures of water and oil will decrease if no heat is supplied to the volume of the emulsion. 

The change in the temperature of the oil volume Tm can be determined by the emulsion's total volume, the 
content of water and oil in it, the size of the droplets of the dispersed phase, and their number. If a certain 
volume V is given, which contains 30% dispersed water (Vw = 0.3 ∙ V) and 70% oil, then to determine the 
number of particles of the dispersed phase, you can use the particle size distribution histograms. If we assume 
that the entire dispersed phase will be uniformly distributed in a volume with particles of the same size, then 
the number of particles in the dispersed phase is equal to 
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where R is the average dispersion of the emulsion, and V – is the volume of the emulsion. 
Then the change in oil temperature over time 
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where moil is the mass, сoil – heat capacity of the carrier phase (oil). 
For example, for an emulsion volume V = 0.5·10-3 m3 30% water (together with steam), the number of 

particles with a size R = 100 µm is N = 3.58·107 pcs. The results of evaluating the boiling dynamics of such 
a drop of water located in an infinite volume of oil were performed using the technique presented in the works 
(Pavlenko 2019, Pavlenko & Koshlak 2021) and in Fig. 1-3. 
 

  
а) b) 

Fig. 1. Changes in temperatures of interfaces t3, the centre of the water droplet t1, steam tn and oil tm over time  
at an initial temperature of 180°C (a), as well as changes in the radius of the oil-steam interface at different initial 
temperatures (b) over time 

 
As seen in Fig. 1a, the oil temperature decrease is more intense than the in the temperature of the centre of 

the water drop decrease t1, which is a consequence of the more intense heat transfer from the oil to the steam 
than from the centre of the water drop to the water-steam interface. This is how heat and mass transfer pro-
cesses proceed far from the heat exchanger's heating surface. The heat flow from oil to steam and the mass 
flow are shown in Fig. 2, 3. 
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Fig. 2. Change in the specific mass flow over time Fig. 3. Change in heat flow from oil to steam over time 
 
As tm decreases, all the parameters shown in the figures decrease, asymptotically approaching zero, indi-

cating the dominant role of the heat flux Qoil in the heat transfer process. The maximum calculated value of 
Qoil reaches ≈ 1.5 W per particle. Considering that the number of particles is N = 3.58·107, we can conclude 
that the heat transfer process is very intense. In this case, fragmentation of the dispersed phase and merging 
neighbouring emulsion drops are possible. In any case, this will lead to the intensification of heat and mass 
transfer processes. 

Otherwise, heat and mass transfer processes are realised near the heat exchanger's heating surface, where 
the base fluid's temperature is the same. Figures 4 and 5 show graphs of the specific mass flow and the heat 
flow versus time. The same conditions were adopted for the calculation, but it was assumed that the tempera-
ture of the contact surface (oil) is constant and equal to 180°C. The steam is even more superheated than during 
the growth of the steam volume away from the heating surface. Its temperature will constantly increase, starting 
from the moment of practically balanced steam pressure. This fact can be explained by the fact that the heat 
flow from oil to steam will exceed the effect of the expansion of the steam volume throughout time, as well as 
the heat flow from steam to water and the heat of the mass flow. 

 

 
Fig. 4. Change in the specific mass flow over time 

 
Fig. 5. Change in the heat flow from oil to steam 

 
The difference between heat and mass transfer processes near the heating surface and heat and mass transfer 

in the emulsion volume is that the volume of steam increases until all of the water has evaporated. The phase 
transition can be explosive and is accompanied by significant flow turbulence in the near-wall region. This, of 
course, increases the intensity of heat transfer. The same processes in the emulsion volume can also contribute 
to an increase in the intensity of HMT. However, the issue of the influence of neighbouring vapour formations 



Determination of the Specific Heat Flux During Boiling… 19
 

on the dynamics of vapour phase growth, which together create a complex hydrodynamic situation in the oil 
volume, remains unclear. If the volume of the emulsion moves in the flow, then deformations of the vapour 
volume occur, which can lead to its separation from the water surface and crushing of the water drop itself. 
The dynamic parameters of the oil-steam interface in the presence of, for example, three particles, one of which 
is located between the other two, under conditions of their uneven boiling, can lead to Rayleigh-Taylor or 
Kelvin-Helmholtz instabilities (Pavlenko et al. 2014a, Pavlenko et al. 2014b). As a result, probably, there will 
be a breakdown of the steam volume and the destruction of a drop of water. The conditions under which these 
phenomena are realised are presented in the works (Xun et al. 2020, Bao et al. 2020). 

3. Heat and Mass Transfer in the Volume of a Boiling Emulsion. 
The complex physicochemical phenomena that determine the stability of thin separating liquid films and 

the structure of two-phase flows are currently not fully understood. In the volume of a boiling emulsion, the 
grinding and coalescence of drops are possible. When the drops merge into a conglomerate, the parameters are 
averaged. The consequence is the appearance of a larger droplet with its own growth rates and accelerations, 
as well as the determining parameters. Consider two particles of different sizes that merge and determine the 
parameters of the resulting particle. 

The volume of water contained in each particle 
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were: 
ρ – the density of water. 

 
Total volume and mass of water 
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To determine the temperature of the water formed by the particles, we determined the average temperatures 
over the cross-section of the water droplets of the initial particles. With a known number of calculated divisions 
of the cross-section of a water drop and known temperatures in each layer from these divisions, the average 
temperature of the water volume of each initial particle is determined by the expression 
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where Ni is the number of divisions of a given cross-section of the volume of water particles. 
The total volume of water determines the radius of the resulting water drop. 
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The volume of steam in each particle 
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The total radius of the resulting emulsion drop 
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The amount of heat transferred from oil to steam can be determined from the heat balance. 
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To determine the speed of movement of the oil-vapour interface w∑, we add the kinetic energies of the 
movement of these boundaries of each initial particle. The kinetic energy of each particle is given by 
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Then the speed w∑ is 
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where: 
h – coefficient equal to 
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Coordinates of the centre of the new drop 
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where: 
 2,12,1 , yxd  – distance from the centre of drop 1 to the centre of a new drop; 
 2,12,1 , yxd  – distance from the centre of drop 1 to the centre of drop 2. 

 
We introduce the notation 
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Then, taking into account the consideration of the geometric theory of the similarity of triangles, we obtain 
the coordinates of the centre of the new drop 

  112 xMxxx  ,   112 yMyyy  . (15) 
The projections of the velocity vector of the formed drop on the axes are determined using the momentum 

theorem: 
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Then the velocity of the formed droplet is equal to 
22
kykxk www  . (17) 

The new angle will determine the direction of the drop   
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Thus, equations (3-18) make it possible to determine the parameters of a newly formed drop. 
As an example, let us perform the calculation for the emulsion fragment shown in Fig. 6 at t = 105°C, taking 

into account the forces that can cause instability, the forces that cause movement, i.e. taking into account the 
displacement along the axes, as well as taking into account the merging of drops. 

 

 
Fig. 6. To the computational model of crushing drops of the dispersed phase of the emulsion (characteristic sizes in microns) 

 
The calculation results are shown in Figs. 7-8, where the moments of droplet merging are visible: first, №2 

with 3, then №4 with 5, then №2 with 4, etc. At the moment of the merging of two drops, after the formation of 
a new drop, the acceleration of the oil-vapour interface increases abruptly (Fig. 7b), which is explained by a sharp 
decrease in the Laplace force, which is included in the Rayleigh-Plesset equation, due to a sharp increase in the 
radius of the interface. Temperature and vapour pressure have almost similar patterns of change. The heat flux 
from oil to steam (Fig. 8) can have a resulting value, both between the two initial ones and higher than the largest 
of the initial ones, which the determination value of the radius of the formed particle can explain. 

For example, for τ ≈ 6 ∙ 10-5 s, when droplets No. 4 and 5 merge, one can see an increase in the radius and 
heat flux. Abrupt changes in acceleration and velocity values can cause hydrodynamic instability of neigh-
bouring drops. But, in this case, as the calculation showed, the magnitudes of these forces caused by g and 
w are insufficient for crushing nearby drops. The calculation was performed according to the method given in 
(Zevnik & Dular 2020, Janssen & Kulacki 2017, Prajapat & Gogate 2019). The heat flux varies inversely with 
the steam temperature. 
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a) b) 
Fig. 7. Change in droplet radius (a) and the acceleration of the oil-steam interface (b) with time as a result of the 
formation of a conglomerate, 1, 2, 3, 4 – numbers of drops of the dispersed phase indicated in Fig. 6 
 

 
Fig. 8. The change in the heat flux from oil to steam in time during the coalescence of drops (notation from Fig. 7a), 
1, 2, 3, 4 – numbers of drops of the dispersed phase indicated in Fig. 6 

 
Thus, this assessment of the thermodynamic and, consequently, hydrodynamic instability of the emulsion 

flow makes it possible to obtain a general picture of changes in the emulsion structure and the intensity of 
HMT processes. Of course, the assumption that the drops merge instantly leads to somewhat incorrect results, 
but the question of the time two drops of different sizes merge also remains open. The coalescence time of two 
drops of various sizes, calculated by the average radius and the method (Merzkirch et al. 2015, Nigmatulin et 
al. 2004, Nhut et al. 2015), is Δτ ≈ 7-7 s, which practically coincides with the calculation step. Another variant 
of the boiling scheme is also possible, in which the drops do not merge but grow, interacting with each other, 
if the stabilising effect of the surfactant is sufficiently large. However, a combination of these schemes can 
also exist. Generally, any scheme of consideration will lead to thermal equilibrium, both if we consider the 
merger and study the thermal contact. Therefore, this method is quite acceptable for calculating the boiling of 
emulsions. 
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4. Conclusions 
1. The developed model of disintegration of a drop of a dispersed phase, surrounded by many neighbouring 

boiling particles, makes it possible to determine, in terms of force, the dynamic effect that leads to frag-
mentation, deformation, or displacement of the drop under consideration. The main differences in consid-
eration of the processes of crushing boiling and nonboiling drops of the dispersed phase of the emulsion 
are indicated. The calculation proved that for boiling particles, it is necessary to consider two maxima of 
the forces acting from neighbouring boiling particles while determining the main one from them. It is 
possible to use this model to determine the ongoing crushing processes and the time scale of the action of 
forces that lead to the destruction of drops. 

2. The proposed models for the movement and coalescence of dispersed phase droplets characterise the main 
processes that occur during the boiling of emulsion media. The movement of drops is ambiguous, as evi-
denced by the constantly changing angle of particle movement in space, which, in turn, indicates a complex 
hydrodynamic situation in the volume of the emulsion. At low temperatures (corresponding to pressure 
drops), the displacement of droplets relative to their initial location can be neglected. The possibility of using 
the processes of movement and merging of dispersed phase droplets to crush either the moving drop itself or 
neighbouring ones that are near the conglomerate formed at the moment of the merger is indicated. 

3. The most probable mechanisms of nucleation, boiling, and destruction of superheated droplets of a low-
boiling dispersed phase of a liquid emulsion have been analysed. Relations are obtained that determine the 
specific heat flux from the heating surface cooled by a boiling dilute emulsion. 

4. The resonant mechanism of destruction of low-boiling droplets of the dispersed phase by steam bubbles is 
substantiated, which is one of the possible consequences of the joint transfer of momentum and heat in 
emulsions. 

 
All of the described processes are the main mechanisms for increasing the intensity of heat and mass trans-

fer, both in the volume of the boiling emulsion and on the heating contact surfaces of heat exchangers. 
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