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Abstract: Low-density polyethylene (LDPE) and polylactic acid (PLA) plastic films were subjected to modification 
using different plasma sources. Argon, nitrogen, air and oxygen were used as a gas phase throughout the process, and 
their impact on the material's surface properties was verified. The surface activation rate was measured via atomic force 
microscopy regarding the porosity factor and using the water contact angle technique. The last method – being feasible, 
agile and of high sensitivity to alternating physicochemical surface character – was utilised to verify the post-process 
stability of the modified surface. Those tests were performed extensively, up to 160 hours (contact angle) and 240 hours 
(atomic force microscopy). 
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1. Introduction
It has been widely observed that biopolymers – polymer plastics of sustainable origin- are increasingly used

in many industrial branches. Although their world production rate is still relatively marginal (Plastics Europe 
– a Report. Plastics – the Facts 2022 2022) as well as abundance in end-products far from frequent, one can
no longer neglect their presence in the polymer processing world (Rosenboom et al. 2022). Most commonly
known bioplastic is polylactic acid (PLA) (Ali et al. 2023, Patel et al. 2022, DeStefano et al. 2020), which has
been produced for years by many manufacturers like NatureWorks LLC, NaturePlast, Sybra Technology or
Total Corbion to name only few most recognisable ones. However physicomechanical properties of PLA are,
to say at least, not entirely satisfactory for an overwhelming variety of demandful industrial products (Oksiuta
et al. 2020, Ebadi-Dehaghani et al. 2015). This is why many manufacturers decided to produce bioplastics
which, in fact, are blends (Mater-Bi™, Novamont) and/or copolymer plastics (like Ecoflex™, BASF) not so
rarely being composed of non-sustainable constituents (Reimer et al. 2008, Moshood et al. 2022). A much
easier and cost-effective way is to modify bioplastic matrix by addition of specific filler leading to improve-
ment in barrier (Singha & Hedenqvist 2020, Yuniarto & Welt 2017, Pan et al. 2021), mechanical (Wang et al.
2019, Asadollahi et al. 2022) or biostatic (Liu et al. 2022) properties. It is a much more flexible way of modi-
fying bioplastic properties compared to chemical processing related to the molecular structure of the polymer
chain. However, the limits to which such a modification can be carried out are reached much earlier. On the
other hand, bioplastic materials are not always mandatory to reveal their high-performance properties during
the product's whole life cycle (Starkova et al. 2022). When it comes to common customer-related products,
not only the material's performance has to be emphasised and its appearance (White et al. 2016, Astvansh
2021). This issue is of great importance when discussing packaging materials, especially those designed for
end-user (individual clients). Apart from protecting the goods from the external environment, those products
also play a crucial role in marketing-related issues. The product to be sold has to be of the finest quality itself
but, not less importantly: being eye-catching and attractive is a key factor when discussing increasing the
selling rate. That is why packaging manufacturers also focus on surface printability as a crucial parameter for the
materials designed for packaging (Pankaj et al. 2014, Ozdemir et al. 1999). Foils, plastic bags and containers are
much less attractive if they are only transparent or colourless. Besides the commonly met process of introducing
crucial data to the packaging surface, like bar code, ingredient list, expiration date or even LOT number, product's
name and/or glossy, vivid colours covering the packaging foil always grab customers' attention.

The surface of most polymer materials has to be activated via different methods before being covered with 
ink (Non-Thermal Plasma Technology for Polymeric Materials 2019, Fard et al. 2017, Matsunaga & Whitney 
2000). Corona discharge, plasma or chemical activation are the most commonly used methods for activating 
the polymer plastic surface just before printing, thus allowing the ink to cover the plastic surface and bond to 
it much more tightly. In industrial plants, the process is mainly held by corona discharge (Božović et al. 2023, 
Lee et al. 2017) due to its relative simplicity in conducting the process as well equipment construction. 
Although plasma treatment has to be conducted in a much more demandful environment (for instance: very 
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low pressure induces non-continuous treatment of the objects of finite geometry), it allows to variably modify 
the structure by simply alternating process parameters. That high-energy treatment leads to the modification 
of a complicated mechanism of chemical transformation, leading to many by-products and, to some extent 
– uncontrolled processes. The modification has a short-lasting effect; however, the time frame is adequate for 
modifying industrial processes. The paper comes with a quantitative data discussion relating to the plasma-
type impact on each polymer and the decay rate after the modification process. Simultaneously, the effect of 
surface morphology alteration is discussed basing on AFM images and, more importantly, absolute values 
allowing to compare plasma type impact on different polymer films. 

2. Materials and Methods 
In the study, two commercially available materials were chosen. Low-density polyethylene (LDPE) - Basell-

Orlen, Malen E FGAN 23-D003, and polylactic acid (PLA) – NatureWorks 3052D, both in the granular form. 
Their principal physical properties are listed in Table 1. The first one represents the most abundant material in 
the polymer plastic packaging industry, and PLA is a commonly recognisable representative of sustainable plas-
tic. Both were used to manufacture rectangular films with 100 cm2 area and 0.15 mm thickness, from which 
smaller samples were cut out (20x20 mm) and later used for plasma processing purposes. Rectangular-shaped 
film samples were made in a press moulding process (LabTech press) under typical process conditions: LDPE 
– 150°C, 20 bar, 3 minutes, PLA – 185°C, 20 bar, 3 minutes. Preheating time was set to 2 minutes regardless of 
polymer plastic type. 

 
Table 1. Physical properties of LDPE and PLA granulate used in the study 

Parameter Unit 
Value 

LDPE PLA 
Density g/cm3 0.924 1.24 
MFR g/10 min 0.28/190C, 2.16 kg 14/210C, 2.16 kg 
Melting temperature C 114 145-160 
Glass transitom temperature C – 55-60 
Vicat/HDT C 96 55 
Processing temperature C 170-220 165-205 
 
Samples were subjected to a radio frequency plasma source, where the parameter to be changed was the 

gas type: argon, nitrogen, oxygen and air. Modification time (5.0 min), power of the source (50 W), gas pres-
sure (10 Pa) and flow (7 cm3/min), as well as experimental set-up geometry – the sample distance from the 
electrode, remain unchanged. After modification, samples were left in the sealed plasma chamber for 
20 minutes and then transported to the container (air atmosphere) to prevent the material from the accidental 
excessive influence of ambient factors like sunlight or contamination by dust and left there for further charac-
terisation. 

Materials were characterised via atomic force microscopy (AFM – Qscope Quesant) and water contact 
angle (wetting). Both techniques were applied before and after sample modification to verify the process im-
pact on the surface morphology and the chemical structure. AFM measurements were performed on areas of 
different dimensions: 19x19 µm and 10x10 µm with RMS [µm] and its mean deviation as a result. RMS (root 
mean square) is related to the height alteration along the specified sampling length, which position was set 
invariably regardless of the sample type. Additionally, to estimate the modification decay time frame, water 
contact angle testing was repeated in specific time frames to acquire results in the most comparable manner 
and post-modification conditions. The first measurement (after the modification) was performed 5-15 minutes 
after plasma treatment, depending on the experiment conditions. 

The plasma reactor and contact angle measuring unit were custom-made by the Department of Mathematics 
and Physics, Faculty of Physics of Polymers, Charles University, Prague, Czech Republic. The access was 
kindly allowed to perform experiments. The software code for contact angle calculations was written and com-
piled by mgr Pavel Solar affiliated. 
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3. Results and Discussion 
Before modification, both materials' surfaces were characterised using AFM. According to calculated RMS 

values (Tables 1 and 2 – first row) and presented graphical representation presented on Figs. 1 and 2, it is 
clearly visible that surfaces may be described as "smooth" irrespective of the characterised area. 

 

 
Fig. 1. Captured images of unmodified LDPE sample surface: 10x10 µm (left) and 19x19 µm (right) 

 
It has to be taken into consideration that neat samples (before modification) were manufactured by the press 

moulding technique without any further surface processing, possibly leading to a decrease in roughness. Visi-
ble on captured images (Figs. 1 and 2) high peaks and low funnel cones should be assigned as a side effect of 
the press moulding process, which was not prioritised for the production of a "low roughness surface" but to 
achieve a sample in the conditions in a most likely industrial environment. Considering this, it is much more 
likely that the mean deviation of the calculated RMS value for untreated samples was relatively high.  

 

 
Fig. 2. Captured images of unmodified PLA sample surface: 10x10 µm (left) and 19x19 µm (right) 

 
Applying different plasma treatments (various gases in particular) led to huge discrepancies among treated 

materials of the same polymer type. According to the data presented for LDPE in Table 2, the most effective 
(in terms of highest impact on increasing surface roughness) plasma type was the one using inert gas – argon 
and nitrogen. The relative increase of RMS is almost twice as much as the initial value, irrespective of charac-
terised surface area. The alteration of the surface roughness ratio in time is worth noting, represented in the 
third and fifth columns of Table 2. Numbers after a hyphen indicate the time frame (in hours) after modification 
when the final measurement was made. In all samples, RMS decreased its value (please compare values in 
columns fourth and fifth in Table 2) but still, differences remained among the samples treated by different 
plasma types. After over a week, RMS measured for argon and air plasma treated samples was found to be 8.8 
and 9.9 (respectively), almost equal to that recorded for unmodified LDPE (9.1). RMS was considerably higher 
in nitrogen and oxygen plasma-treated samples, preserving elevated RMS at more than 150% of its initial 
value. What is more, oxygen plasma-treated LDPE seems to be highly resistant to decay processes, with rough-
ness ratio (RMS) being in its peak value (14.2) and preserving almost unchanged value after 10 days (14.0). 
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Table 2. RMS values and their mean deviation calculated for the LDPE sample 

Gas type RMS (mean dev) – 10 x10  µm RMS (mean dev) – 19 x19  µm 
Unmodified 5.8 (4.4) 9.1 (6.9) 

Ar 11.4 (7.7) 6.3 (4.6) – 210h 15.4 (11.26) 8.8 (6.5) – 210h 
Air 5.2 (3.3) 6.3 (4.7) – 192h 14 (8.5) 9.9 (6.7) – 192h 
N2 11 (7.9) 10.2 (7.7) – 187h 22.3 (14.8) 16.8 (10.9) – 187h 
O2 9.6 (7.1) 6.6 (4.6) – 240h 14.2 (10.3) 14.0 (10.2) – 240h 

 
Similar divagations may be carried out on PLA-modified samples. As reported in Table 3, each modifica-

tion process led to a remarkable effect, mostly increasing RMS to at least one order of magnitude. Also, con-
trary to LDPE, the decay is not a straightforward process leading to only a slight decrease in RMS. Referring 
to Table 3, only the sample subjected to nitrogen-assisted plasma irradiation revealed a 15-20% loss in RMS. 
All other materials showed increasing RMS value with time which may be explained by some post-treatment 
processes modestly increasing surface roughness ratio. By analysing the mean deviation value (refer to Table 
3, columns fourth and fifth), it may also be considered that the dimension diversity of surface peaks and funnel 
cones has considerably increased after plasma processing. 

 
Table 3. RMS values and their mean deviation calculated for the PLA sample 

Gas type RMS (mean dev) – 10 x10  µm RMS (mean dev) – 19 x19  µm 
Unmodified 3.5 (2.6) 8.3 (4.7) 

Ar 30.4 (14.7) 44.2 (28.6) – 210h 53.3 (34.2) 64.3 (39.1) – 210h 
Air 68.0 (41.7) 88.6 (48.6) – 192h 113.9 (65.7) 121.3 (76.6) – 192h 
N2 84.9 (63.0) 69.1 (54.7) – 187h 98.4 (78) 84.9 (60.8) – 187h 
O2 71.7 (42.7) 53.6 (33.1) – 240h 83.3 (47.1) 102.5 (63.6) – 240h 

 
When comparing RMS values for LDPE and PLA (columns nos. 2 and 4 in respective Tables 1 and 2), one 

can easily notice that surface roughness alteration for LDPE was relatively slight. That observation may be 
easily supported by both polymer plastics' commonly known chemical composition and structure. While LDPE 
consists of a simple hydrocarbon chain, PLA backbone is of a polyester nature in contrast with many oxygen 
atoms and double bonding therein. Absence of heteroatoms and double bonds in LDPE results in high re-
sistance to many chemical factors and physical treatment. However, applying a high energy beam on the sur-
face (supported with proper gas – i.e. oxygen) has to affect even the most resistive material, but still, chemical 
structure alterations were not even expected to occur at the level observed in PLA-modified samples. Interest-
ingly, oxygen-assisted plasma treatment led to a stable structure in LDPE, indicating permanent modification 
and increased surface activity.  

Some general observations can be withdrawn from water contact angle measurements, regardless of the 
plasma type used. LDPE surface exposed to a high energy source changed its hydrophobic character (contact 
angle around 90 degrees) to hydrophilic, with a water contact angle around half of the initial value (Figure 3). 
Subsequent wetting measurements reveal increasing water contact angle with time (asymptotically) but not re-
storing the initial value even after a considerably long experiment time frame (up to 160 hrs). What is essential, 
the final value of the water contact angle does not significantly differ, disregarding the plasma type used, and 
oscillates around 60 degrees indicating turning the surface character to a more hydrophilic one. The discrepancies 
among them are within the experimental error margin, which is represented by error bars in Figure 3. 

A similar tendency (massive decrease of a water contact angle) was observed in PLA-modified samples, 
presented in Figure 4. The initial value decreased from 60 to around 10 degrees (for argon, air and nitrogen 
plasma). The only exception was oxygen plasma, where the measured water contact angle after modification 
decreased only by 10 degrees. Alike for LDPE, a subsequent increase in water contact angle value was ob-
served apart from the fact that the asymptotic characteristic was remarkably steeper and led to the restoration 
of initial wetting characteristics (the final contact angle was comparable to the initial one). Referring to data 
presented in Figures 3 and 4 in a more quantitative way, it has to be noted that it took no longer than five hours 
for PLA samples to restore their wetting character, whereas the LDPE surface became permanently changed. 
There also exist differences among plasma type influence on PLA surface. The most stable structure (after 
modification) seems to be revealed for air plasma (4 hours with the lowest contact angle), then nitrogen 
(2.5 hrs) and argon and oxygen being the least stable. PLA modified with argon plasma sustained its active 
state (with the lowest contact angle) only up to the first hour after modification as well oxygen modified PLA 
sample lasted longer, but also the contact angle decreased only by 1/6 of its initial value. 
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Fig. 3. Water contact angles alternation in the time domain for four different plasma-modified LDPE 

 
 
 

 

 
Fig. 4. Water contact angles alternation in the time domain for four different plasma-modified PLA 
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4. Conclusions 
Plasma modification leads to physical and chemical alteration of the modified surface. The differences were 

observed not only on different impacts on the material type but also among the same polymer material sub-
jected to different inert gases. Surprisingly, air and oxygen plasma do not always lead to modification, with 
the most remarkably emphasised changes, in terms of time stability or water contact angle. 

Although counting on AFM and contact angle measurements, it is pointless to discuss the detailed chemical 
and physical transformation of the modified surface; those two techniques give sufficient quantitative insight 
into the modification range (increasing surface activity) and the time when those supreme parameters are sus-
tained. That comparison gives a usable dataset which may be profitable for polymer surface processing tech-
niques from the continuous modification process (applied for industrial scale). It is beneficial to utilise a spe-
cific plasma source giving an advantage on the modification degree (the most active surface – with the lowest 
contact angle) or compromising the activity with the longest modification effect duration, considering printing 
techniques commonly used in the packaging industry. 

On the other hand, verifying plasma impact on the modified surface for two different materials (LDPE and 
PLA) in the long time frame gave valuable information considering post-processing stability. PLA seems to 
have a much more diverse surface (high RMS). In contrast, changes in LDPE samples were more of a chemical 
character with considerably lower final water contact angle but only slightly changed RMS (compared to PLA 
sample). 
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of Group of Thin Films and Surfaces, Department of Macromolecular Physics, Faculty of Mathematics 
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